↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PrologToPiTRSProof
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
SHAPES_IN_GA(Matrix, N) → U1_GA(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
SHAPES_IN_GA(Matrix, N) → VARMAT_IN_GA(Matrix, MatrixWithVars)
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → U3_GA(L, Ls, VL, VLs, varmat_in_ga(L, VL))
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → VARMAT_IN_GA(L, VL)
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → U5_GA(Xs, VXs, varmat_in_ga(Xs, VXs))
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → VARMAT_IN_GA(Xs, VXs)
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → U6_GA(Xs, X, VXs, varmat_in_ga(Xs, VXs))
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → VARMAT_IN_GA(Xs, VXs)
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_GA(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → VARMAT_IN_GA(Ls, VLs)
U1_GA(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_GA(Matrix, N, unif_matrx_in_a(MatrixWithVars))
U1_GA(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → UNIF_MATRX_IN_A(MatrixWithVars)
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → U7_A(L1, L2, Ls, unif_lines_in_aa(L1, L2))
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → UNIF_LINES_IN_AA(L1, L2)
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → UNIF_PAIRS_IN_A(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → U11_A(A, B, Pairs, unif_in_aa(A, B))
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → UNIF_IN_AA(A, B)
U11_A(A, B, Pairs, unif_out_aa(A, B)) → U12_A(A, B, Pairs, unif_pairs_in_a(Pairs))
U11_A(A, B, Pairs, unif_out_aa(A, B)) → UNIF_PAIRS_IN_A(Pairs)
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_AA(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → UNIF_LINES_IN_AA(.(X, L1s), .(Z, L2s))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_A(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → UNIF_MATRX_IN_A(.(L2, Ls))
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ PrologToPiTRSProof
SHAPES_IN_GA(Matrix, N) → U1_GA(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
SHAPES_IN_GA(Matrix, N) → VARMAT_IN_GA(Matrix, MatrixWithVars)
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → U3_GA(L, Ls, VL, VLs, varmat_in_ga(L, VL))
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → VARMAT_IN_GA(L, VL)
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → U5_GA(Xs, VXs, varmat_in_ga(Xs, VXs))
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → VARMAT_IN_GA(Xs, VXs)
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → U6_GA(Xs, X, VXs, varmat_in_ga(Xs, VXs))
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → VARMAT_IN_GA(Xs, VXs)
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_GA(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → VARMAT_IN_GA(Ls, VLs)
U1_GA(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_GA(Matrix, N, unif_matrx_in_a(MatrixWithVars))
U1_GA(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → UNIF_MATRX_IN_A(MatrixWithVars)
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → U7_A(L1, L2, Ls, unif_lines_in_aa(L1, L2))
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → UNIF_LINES_IN_AA(L1, L2)
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → UNIF_PAIRS_IN_A(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → U11_A(A, B, Pairs, unif_in_aa(A, B))
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → UNIF_IN_AA(A, B)
U11_A(A, B, Pairs, unif_out_aa(A, B)) → U12_A(A, B, Pairs, unif_pairs_in_a(Pairs))
U11_A(A, B, Pairs, unif_out_aa(A, B)) → UNIF_PAIRS_IN_A(Pairs)
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_AA(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → UNIF_LINES_IN_AA(.(X, L1s), .(Z, L2s))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_A(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → UNIF_MATRX_IN_A(.(L2, Ls))
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → U11_A(A, B, Pairs, unif_in_aa(A, B))
U11_A(A, B, Pairs, unif_out_aa(A, B)) → UNIF_PAIRS_IN_A(Pairs)
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → U11_A(A, B, Pairs, unif_in_aa(A, B))
U11_A(A, B, Pairs, unif_out_aa(A, B)) → UNIF_PAIRS_IN_A(Pairs)
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
UNIF_PAIRS_IN_A → U11_A(unif_in_aa)
U11_A(unif_out_aa) → UNIF_PAIRS_IN_A
unif_in_aa → unif_out_aa
unif_in_aa
UNIF_PAIRS_IN_A → U11_A(unif_out_aa)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
UNIF_PAIRS_IN_A → U11_A(unif_out_aa)
U11_A(unif_out_aa) → UNIF_PAIRS_IN_A
unif_in_aa → unif_out_aa
unif_in_aa
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
UNIF_PAIRS_IN_A → U11_A(unif_out_aa)
U11_A(unif_out_aa) → UNIF_PAIRS_IN_A
unif_in_aa
unif_in_aa
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
UNIF_PAIRS_IN_A → U11_A(unif_out_aa)
U11_A(unif_out_aa) → UNIF_PAIRS_IN_A
UNIF_PAIRS_IN_A → U11_A(unif_out_aa)
U11_A(unif_out_aa) → UNIF_PAIRS_IN_A
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → UNIF_LINES_IN_AA(.(X, L1s), .(Z, L2s))
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → UNIF_LINES_IN_AA(.(X, L1s), .(Z, L2s))
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
unif_pairs_in_a([]) → unif_pairs_out_a([])
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
UNIF_LINES_IN_AA → U9_AA(unif_pairs_in_a)
U9_AA(unif_pairs_out_a) → UNIF_LINES_IN_AA
unif_pairs_in_a → U11_a(unif_in_aa)
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
unif_pairs_in_a
U11_a(x0)
unif_in_aa
U12_a(x0)
UNIF_LINES_IN_AA → U9_AA(unif_pairs_out_a)
UNIF_LINES_IN_AA → U9_AA(U11_a(unif_in_aa))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
UNIF_LINES_IN_AA → U9_AA(unif_pairs_out_a)
UNIF_LINES_IN_AA → U9_AA(U11_a(unif_in_aa))
U9_AA(unif_pairs_out_a) → UNIF_LINES_IN_AA
unif_pairs_in_a → U11_a(unif_in_aa)
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
unif_pairs_in_a
U11_a(x0)
unif_in_aa
U12_a(x0)
UNIF_LINES_IN_AA → U9_AA(U11_a(unif_out_aa))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PiDP
↳ PrologToPiTRSProof
UNIF_LINES_IN_AA → U9_AA(unif_pairs_out_a)
UNIF_LINES_IN_AA → U9_AA(U11_a(unif_out_aa))
U9_AA(unif_pairs_out_a) → UNIF_LINES_IN_AA
unif_pairs_in_a → U11_a(unif_in_aa)
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
unif_pairs_in_a
U11_a(x0)
unif_in_aa
U12_a(x0)
UNIF_LINES_IN_AA → U9_AA(unif_pairs_out_a)
UNIF_LINES_IN_AA → U9_AA(U11_a(unif_out_aa))
U9_AA(unif_pairs_out_a) → UNIF_LINES_IN_AA
unif_pairs_in_a → U11_a(unif_in_aa)
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PrologToPiTRSProof
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → U7_A(L1, L2, Ls, unif_lines_in_aa(L1, L2))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → UNIF_MATRX_IN_A(.(L2, Ls))
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PrologToPiTRSProof
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → U7_A(L1, L2, Ls, unif_lines_in_aa(L1, L2))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → UNIF_MATRX_IN_A(.(L2, Ls))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
unif_pairs_in_a([]) → unif_pairs_out_a([])
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ PiDP
↳ PrologToPiTRSProof
U7_A(unif_lines_out_aa) → UNIF_MATRX_IN_A
UNIF_MATRX_IN_A → U7_A(unif_lines_in_aa)
unif_lines_in_aa → U9_aa(unif_pairs_in_a)
unif_lines_in_aa → unif_lines_out_aa
U9_aa(unif_pairs_out_a) → U10_aa(unif_lines_in_aa)
unif_pairs_in_a → U11_a(unif_in_aa)
U10_aa(unif_lines_out_aa) → unif_lines_out_aa
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
unif_lines_in_aa
U9_aa(x0)
unif_pairs_in_a
U10_aa(x0)
U11_a(x0)
unif_in_aa
U12_a(x0)
UNIF_MATRX_IN_A → U7_A(unif_lines_out_aa)
UNIF_MATRX_IN_A → U7_A(U9_aa(unif_pairs_in_a))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PrologToPiTRSProof
UNIF_MATRX_IN_A → U7_A(U9_aa(unif_pairs_in_a))
UNIF_MATRX_IN_A → U7_A(unif_lines_out_aa)
U7_A(unif_lines_out_aa) → UNIF_MATRX_IN_A
unif_lines_in_aa → U9_aa(unif_pairs_in_a)
unif_lines_in_aa → unif_lines_out_aa
U9_aa(unif_pairs_out_a) → U10_aa(unif_lines_in_aa)
unif_pairs_in_a → U11_a(unif_in_aa)
U10_aa(unif_lines_out_aa) → unif_lines_out_aa
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
unif_lines_in_aa
U9_aa(x0)
unif_pairs_in_a
U10_aa(x0)
U11_a(x0)
unif_in_aa
U12_a(x0)
UNIF_MATRX_IN_A → U7_A(U9_aa(unif_pairs_in_a))
UNIF_MATRX_IN_A → U7_A(unif_lines_out_aa)
U7_A(unif_lines_out_aa) → UNIF_MATRX_IN_A
unif_lines_in_aa → U9_aa(unif_pairs_in_a)
unif_lines_in_aa → unif_lines_out_aa
U9_aa(unif_pairs_out_a) → U10_aa(unif_lines_in_aa)
unif_pairs_in_a → U11_a(unif_in_aa)
U10_aa(unif_lines_out_aa) → unif_lines_out_aa
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PrologToPiTRSProof
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → VARMAT_IN_GA(L, VL)
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → VARMAT_IN_GA(Ls, VLs)
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → U3_GA(L, Ls, VL, VLs, varmat_in_ga(L, VL))
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → VARMAT_IN_GA(Xs, VXs)
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → VARMAT_IN_GA(Xs, VXs)
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PrologToPiTRSProof
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → VARMAT_IN_GA(L, VL)
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → VARMAT_IN_GA(Ls, VLs)
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → U3_GA(L, Ls, VL, VLs, varmat_in_ga(L, VL))
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → VARMAT_IN_GA(Xs, VXs)
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → VARMAT_IN_GA(Xs, VXs)
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
↳ PrologToPiTRSProof
VARMAT_IN_GA(.(black, Xs)) → VARMAT_IN_GA(Xs)
U3_GA(Ls, varmat_out_ga) → VARMAT_IN_GA(Ls)
VARMAT_IN_GA(.(L, Ls)) → VARMAT_IN_GA(L)
VARMAT_IN_GA(.(L, Ls)) → U3_GA(Ls, varmat_in_ga(L))
VARMAT_IN_GA(.(white, Xs)) → VARMAT_IN_GA(Xs)
varmat_in_ga([]) → varmat_out_ga
varmat_in_ga(.(L, Ls)) → U3_ga(Ls, varmat_in_ga(L))
varmat_in_ga(.(black, Xs)) → U5_ga(varmat_in_ga(Xs))
varmat_in_ga(.(white, Xs)) → U6_ga(varmat_in_ga(Xs))
U3_ga(Ls, varmat_out_ga) → U4_ga(varmat_in_ga(Ls))
U5_ga(varmat_out_ga) → varmat_out_ga
U6_ga(varmat_out_ga) → varmat_out_ga
U4_ga(varmat_out_ga) → varmat_out_ga
varmat_in_ga(x0)
U3_ga(x0, x1)
U5_ga(x0)
U6_ga(x0)
U4_ga(x0)
From the DPs we obtained the following set of size-change graphs:
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
SHAPES_IN_GA(Matrix, N) → U1_GA(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
SHAPES_IN_GA(Matrix, N) → VARMAT_IN_GA(Matrix, MatrixWithVars)
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → U3_GA(L, Ls, VL, VLs, varmat_in_ga(L, VL))
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → VARMAT_IN_GA(L, VL)
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → U5_GA(Xs, VXs, varmat_in_ga(Xs, VXs))
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → VARMAT_IN_GA(Xs, VXs)
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → U6_GA(Xs, X, VXs, varmat_in_ga(Xs, VXs))
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → VARMAT_IN_GA(Xs, VXs)
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_GA(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → VARMAT_IN_GA(Ls, VLs)
U1_GA(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_GA(Matrix, N, unif_matrx_in_a(MatrixWithVars))
U1_GA(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → UNIF_MATRX_IN_A(MatrixWithVars)
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → U7_A(L1, L2, Ls, unif_lines_in_aa(L1, L2))
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → UNIF_LINES_IN_AA(L1, L2)
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → UNIF_PAIRS_IN_A(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → U11_A(A, B, Pairs, unif_in_aa(A, B))
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → UNIF_IN_AA(A, B)
U11_A(A, B, Pairs, unif_out_aa(A, B)) → U12_A(A, B, Pairs, unif_pairs_in_a(Pairs))
U11_A(A, B, Pairs, unif_out_aa(A, B)) → UNIF_PAIRS_IN_A(Pairs)
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_AA(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → UNIF_LINES_IN_AA(.(X, L1s), .(Z, L2s))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_A(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → UNIF_MATRX_IN_A(.(L2, Ls))
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
SHAPES_IN_GA(Matrix, N) → U1_GA(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
SHAPES_IN_GA(Matrix, N) → VARMAT_IN_GA(Matrix, MatrixWithVars)
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → U3_GA(L, Ls, VL, VLs, varmat_in_ga(L, VL))
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → VARMAT_IN_GA(L, VL)
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → U5_GA(Xs, VXs, varmat_in_ga(Xs, VXs))
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → VARMAT_IN_GA(Xs, VXs)
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → U6_GA(Xs, X, VXs, varmat_in_ga(Xs, VXs))
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → VARMAT_IN_GA(Xs, VXs)
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_GA(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → VARMAT_IN_GA(Ls, VLs)
U1_GA(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_GA(Matrix, N, unif_matrx_in_a(MatrixWithVars))
U1_GA(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → UNIF_MATRX_IN_A(MatrixWithVars)
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → U7_A(L1, L2, Ls, unif_lines_in_aa(L1, L2))
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → UNIF_LINES_IN_AA(L1, L2)
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → UNIF_PAIRS_IN_A(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → U11_A(A, B, Pairs, unif_in_aa(A, B))
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → UNIF_IN_AA(A, B)
U11_A(A, B, Pairs, unif_out_aa(A, B)) → U12_A(A, B, Pairs, unif_pairs_in_a(Pairs))
U11_A(A, B, Pairs, unif_out_aa(A, B)) → UNIF_PAIRS_IN_A(Pairs)
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_AA(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → UNIF_LINES_IN_AA(.(X, L1s), .(Z, L2s))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_A(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → UNIF_MATRX_IN_A(.(L2, Ls))
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → U11_A(A, B, Pairs, unif_in_aa(A, B))
U11_A(A, B, Pairs, unif_out_aa(A, B)) → UNIF_PAIRS_IN_A(Pairs)
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
↳ PiDP
UNIF_PAIRS_IN_A(.(A, .(B, Pairs))) → U11_A(A, B, Pairs, unif_in_aa(A, B))
U11_A(A, B, Pairs, unif_out_aa(A, B)) → UNIF_PAIRS_IN_A(Pairs)
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ PiDP
↳ PiDP
↳ PiDP
UNIF_PAIRS_IN_A → U11_A(unif_in_aa)
U11_A(unif_out_aa) → UNIF_PAIRS_IN_A
unif_in_aa → unif_out_aa
unif_in_aa
UNIF_PAIRS_IN_A → U11_A(unif_out_aa)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
↳ PiDP
UNIF_PAIRS_IN_A → U11_A(unif_out_aa)
U11_A(unif_out_aa) → UNIF_PAIRS_IN_A
unif_in_aa → unif_out_aa
unif_in_aa
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ PiDP
↳ PiDP
↳ PiDP
UNIF_PAIRS_IN_A → U11_A(unif_out_aa)
U11_A(unif_out_aa) → UNIF_PAIRS_IN_A
unif_in_aa
unif_in_aa
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Rewriting
↳ QDP
↳ UsableRulesProof
↳ QDP
↳ QReductionProof
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PiDP
↳ PiDP
UNIF_PAIRS_IN_A → U11_A(unif_out_aa)
U11_A(unif_out_aa) → UNIF_PAIRS_IN_A
UNIF_PAIRS_IN_A → U11_A(unif_out_aa)
U11_A(unif_out_aa) → UNIF_PAIRS_IN_A
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDP
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → UNIF_LINES_IN_AA(.(X, L1s), .(Z, L2s))
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
↳ PiDP
U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → UNIF_LINES_IN_AA(.(X, L1s), .(Z, L2s))
UNIF_LINES_IN_AA(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_AA(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
unif_pairs_in_a([]) → unif_pairs_out_a([])
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ PiDP
↳ PiDP
UNIF_LINES_IN_AA → U9_AA(unif_pairs_in_a)
U9_AA(unif_pairs_out_a) → UNIF_LINES_IN_AA
unif_pairs_in_a → U11_a(unif_in_aa)
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
unif_pairs_in_a
U11_a(x0)
unif_in_aa
U12_a(x0)
UNIF_LINES_IN_AA → U9_AA(unif_pairs_out_a)
UNIF_LINES_IN_AA → U9_AA(U11_a(unif_in_aa))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ PiDP
↳ PiDP
UNIF_LINES_IN_AA → U9_AA(unif_pairs_out_a)
UNIF_LINES_IN_AA → U9_AA(U11_a(unif_in_aa))
U9_AA(unif_pairs_out_a) → UNIF_LINES_IN_AA
unif_pairs_in_a → U11_a(unif_in_aa)
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
unif_pairs_in_a
U11_a(x0)
unif_in_aa
U12_a(x0)
UNIF_LINES_IN_AA → U9_AA(U11_a(unif_out_aa))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ Rewriting
↳ QDP
↳ NonTerminationProof
↳ PiDP
↳ PiDP
UNIF_LINES_IN_AA → U9_AA(unif_pairs_out_a)
UNIF_LINES_IN_AA → U9_AA(U11_a(unif_out_aa))
U9_AA(unif_pairs_out_a) → UNIF_LINES_IN_AA
unif_pairs_in_a → U11_a(unif_in_aa)
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
unif_pairs_in_a
U11_a(x0)
unif_in_aa
U12_a(x0)
UNIF_LINES_IN_AA → U9_AA(unif_pairs_out_a)
UNIF_LINES_IN_AA → U9_AA(U11_a(unif_out_aa))
U9_AA(unif_pairs_out_a) → UNIF_LINES_IN_AA
unif_pairs_in_a → U11_a(unif_in_aa)
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → U7_A(L1, L2, Ls, unif_lines_in_aa(L1, L2))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → UNIF_MATRX_IN_A(.(L2, Ls))
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ PiDP
UNIF_MATRX_IN_A(.(L1, .(L2, Ls))) → U7_A(L1, L2, Ls, unif_lines_in_aa(L1, L2))
U7_A(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → UNIF_MATRX_IN_A(.(L2, Ls))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
unif_pairs_in_a([]) → unif_pairs_out_a([])
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ PiDP
U7_A(unif_lines_out_aa) → UNIF_MATRX_IN_A
UNIF_MATRX_IN_A → U7_A(unif_lines_in_aa)
unif_lines_in_aa → U9_aa(unif_pairs_in_a)
unif_lines_in_aa → unif_lines_out_aa
U9_aa(unif_pairs_out_a) → U10_aa(unif_lines_in_aa)
unif_pairs_in_a → U11_a(unif_in_aa)
U10_aa(unif_lines_out_aa) → unif_lines_out_aa
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
unif_lines_in_aa
U9_aa(x0)
unif_pairs_in_a
U10_aa(x0)
U11_a(x0)
unif_in_aa
U12_a(x0)
UNIF_MATRX_IN_A → U7_A(unif_lines_out_aa)
UNIF_MATRX_IN_A → U7_A(U9_aa(unif_pairs_in_a))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ Narrowing
↳ QDP
↳ NonTerminationProof
↳ PiDP
UNIF_MATRX_IN_A → U7_A(U9_aa(unif_pairs_in_a))
UNIF_MATRX_IN_A → U7_A(unif_lines_out_aa)
U7_A(unif_lines_out_aa) → UNIF_MATRX_IN_A
unif_lines_in_aa → U9_aa(unif_pairs_in_a)
unif_lines_in_aa → unif_lines_out_aa
U9_aa(unif_pairs_out_a) → U10_aa(unif_lines_in_aa)
unif_pairs_in_a → U11_a(unif_in_aa)
U10_aa(unif_lines_out_aa) → unif_lines_out_aa
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
unif_lines_in_aa
U9_aa(x0)
unif_pairs_in_a
U10_aa(x0)
U11_a(x0)
unif_in_aa
U12_a(x0)
UNIF_MATRX_IN_A → U7_A(U9_aa(unif_pairs_in_a))
UNIF_MATRX_IN_A → U7_A(unif_lines_out_aa)
U7_A(unif_lines_out_aa) → UNIF_MATRX_IN_A
unif_lines_in_aa → U9_aa(unif_pairs_in_a)
unif_lines_in_aa → unif_lines_out_aa
U9_aa(unif_pairs_out_a) → U10_aa(unif_lines_in_aa)
unif_pairs_in_a → U11_a(unif_in_aa)
U10_aa(unif_lines_out_aa) → unif_lines_out_aa
U11_a(unif_out_aa) → U12_a(unif_pairs_in_a)
unif_in_aa → unif_out_aa
U12_a(unif_pairs_out_a) → unif_pairs_out_a
unif_pairs_in_a → unif_pairs_out_a
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → VARMAT_IN_GA(L, VL)
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → VARMAT_IN_GA(Ls, VLs)
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → U3_GA(L, Ls, VL, VLs, varmat_in_ga(L, VL))
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → VARMAT_IN_GA(Xs, VXs)
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → VARMAT_IN_GA(Xs, VXs)
shapes_in_ga(Matrix, N) → U1_ga(Matrix, N, varmat_in_ga(Matrix, MatrixWithVars))
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
U1_ga(Matrix, N, varmat_out_ga(Matrix, MatrixWithVars)) → U2_ga(Matrix, N, unif_matrx_in_a(MatrixWithVars))
unif_matrx_in_a(.(L1, .(L2, Ls))) → U7_a(L1, L2, Ls, unif_lines_in_aa(L1, L2))
unif_lines_in_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s))) → U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_in_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, []))))))))))))))
unif_pairs_in_a([]) → unif_pairs_out_a([])
unif_pairs_in_a(.(A, .(B, Pairs))) → U11_a(A, B, Pairs, unif_in_aa(A, B))
unif_in_aa(w(A), w(A)) → unif_out_aa(w(A), w(A))
unif_in_aa(black, black) → unif_out_aa(black, black)
unif_in_aa(black, w(X)) → unif_out_aa(black, w(X))
unif_in_aa(w(X), black) → unif_out_aa(w(X), black)
U11_a(A, B, Pairs, unif_out_aa(A, B)) → U12_a(A, B, Pairs, unif_pairs_in_a(Pairs))
U12_a(A, B, Pairs, unif_pairs_out_a(Pairs)) → unif_pairs_out_a(.(A, .(B, Pairs)))
U9_aa(W, X, L1s, Y, Z, L2s, unif_pairs_out_a(.(W, .(X, .(Y, .(Z, .(W, .(Y, .(X, .(Z, .(W, .(Z, .(X, .(Y, [])))))))))))))) → U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_in_aa(.(X, L1s), .(Z, L2s)))
unif_lines_in_aa(.(X, []), .(X1, [])) → unif_lines_out_aa(.(X, []), .(X1, []))
U10_aa(W, X, L1s, Y, Z, L2s, unif_lines_out_aa(.(X, L1s), .(Z, L2s))) → unif_lines_out_aa(.(W, .(X, L1s)), .(Y, .(Z, L2s)))
U7_a(L1, L2, Ls, unif_lines_out_aa(L1, L2)) → U8_a(L1, L2, Ls, unif_matrx_in_a(.(L2, Ls)))
unif_matrx_in_a(.(X, [])) → unif_matrx_out_a(.(X, []))
U8_a(L1, L2, Ls, unif_matrx_out_a(.(L2, Ls))) → unif_matrx_out_a(.(L1, .(L2, Ls)))
U2_ga(Matrix, N, unif_matrx_out_a(MatrixWithVars)) → shapes_out_ga(Matrix, N)
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → VARMAT_IN_GA(L, VL)
U3_GA(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → VARMAT_IN_GA(Ls, VLs)
VARMAT_IN_GA(.(L, Ls), .(VL, VLs)) → U3_GA(L, Ls, VL, VLs, varmat_in_ga(L, VL))
VARMAT_IN_GA(.(black, Xs), .(black, VXs)) → VARMAT_IN_GA(Xs, VXs)
VARMAT_IN_GA(.(white, Xs), .(w(X), VXs)) → VARMAT_IN_GA(Xs, VXs)
varmat_in_ga([], []) → varmat_out_ga([], [])
varmat_in_ga(.(L, Ls), .(VL, VLs)) → U3_ga(L, Ls, VL, VLs, varmat_in_ga(L, VL))
varmat_in_ga(.(black, Xs), .(black, VXs)) → U5_ga(Xs, VXs, varmat_in_ga(Xs, VXs))
varmat_in_ga(.(white, Xs), .(w(X), VXs)) → U6_ga(Xs, X, VXs, varmat_in_ga(Xs, VXs))
U3_ga(L, Ls, VL, VLs, varmat_out_ga(L, VL)) → U4_ga(L, Ls, VL, VLs, varmat_in_ga(Ls, VLs))
U5_ga(Xs, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(black, Xs), .(black, VXs))
U6_ga(Xs, X, VXs, varmat_out_ga(Xs, VXs)) → varmat_out_ga(.(white, Xs), .(w(X), VXs))
U4_ga(L, Ls, VL, VLs, varmat_out_ga(Ls, VLs)) → varmat_out_ga(.(L, Ls), .(VL, VLs))
↳ Prolog
↳ PrologToPiTRSProof
↳ PrologToPiTRSProof
↳ PiTRS
↳ DependencyPairsProof
↳ PiDP
↳ DependencyGraphProof
↳ AND
↳ PiDP
↳ PiDP
↳ PiDP
↳ PiDP
↳ UsableRulesProof
↳ PiDP
↳ PiDPToQDPProof
↳ QDP
↳ QDPSizeChangeProof
VARMAT_IN_GA(.(black, Xs)) → VARMAT_IN_GA(Xs)
VARMAT_IN_GA(.(L, Ls)) → U3_GA(L, Ls, varmat_in_ga(L))
VARMAT_IN_GA(.(L, Ls)) → VARMAT_IN_GA(L)
U3_GA(L, Ls, varmat_out_ga(L)) → VARMAT_IN_GA(Ls)
VARMAT_IN_GA(.(white, Xs)) → VARMAT_IN_GA(Xs)
varmat_in_ga([]) → varmat_out_ga([])
varmat_in_ga(.(L, Ls)) → U3_ga(L, Ls, varmat_in_ga(L))
varmat_in_ga(.(black, Xs)) → U5_ga(Xs, varmat_in_ga(Xs))
varmat_in_ga(.(white, Xs)) → U6_ga(Xs, varmat_in_ga(Xs))
U3_ga(L, Ls, varmat_out_ga(L)) → U4_ga(L, Ls, varmat_in_ga(Ls))
U5_ga(Xs, varmat_out_ga(Xs)) → varmat_out_ga(.(black, Xs))
U6_ga(Xs, varmat_out_ga(Xs)) → varmat_out_ga(.(white, Xs))
U4_ga(L, Ls, varmat_out_ga(Ls)) → varmat_out_ga(.(L, Ls))
varmat_in_ga(x0)
U3_ga(x0, x1, x2)
U5_ga(x0, x1)
U6_ga(x0, x1)
U4_ga(x0, x1, x2)
From the DPs we obtained the following set of size-change graphs: